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1. INTRODUCTION AND NOTATIONS

In a recent paper [4] we proved a Cohen-type inequality for ultraspherical
series which implies divergence theorems for ultraspherical expansions and
spherical harmonic expansions on the real sphere S n _ 1 C IR n with respect to
arbitrary groupings of the degrees. In the following we extend the Cohen­
type inequality to the larger class of Jacobi polynomials and we also get an
estimate in the case of the critical endpoints of the Pollard interval (i~ t j ,
~~ti) of U boundedness with respect to the natural grouping. Since the
zonal spherical function on rank one symmetric spaces X of compact type
can be viewed as Jacobi polynomials R~a,l3) with suitable a, P>- - i,
Corollary 2 in [4] can be proved for this larger class of spaces. Let us
mention that the proof of the divergence result in [10] is only correct for the
case of the canonical grouping which is a corollary of an old theorem of
Nicolaev [2]. A correct proof of the results in [10] follows from our Cohen­
type inequality in the special case p = 1.

In the following we assume a >- P>- -1/2, a > -1/2. The results are
completely analogous if a <p. For x in [-1, Ijlet Rm = R:;:·I3) be the Jacobi
polynomial of degree m, defined by
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R<,::,!J)(x) = 2Fl[-m, m +a +P+ I; a + 1; (1 -x)/2]

= ~ (-m)k(m+a+p+1h (l-X)k (l.l)
bO k!(a+1)k 2'

where (a)k = r(k + a)/r(a). The Jacobi polynomials are orthogonal in L~ =
L~.".8(-1, 1), 1~ P < 00, where

and

As usual Ilflloo = ess sUPxE[_I,11If(x)l, and f E L~ has the expansion

00

f(x)- I cmU)hmR m
m=O

with

.1

cmU) = J f(x) Rm(x) w(x) dx
-I

and

hm= h:,!J = (( 1 [R m(x)]2 W(X) dX) -I

(2m + a +P+ 1) rem + a +P+ 1) rem +a + 1)
= 2a +IJ+ 1rem +P+ 1) rem + 1) r(a + 1) r(a + 1) .

Denote by * the usual convolution product in L~. [12]. For k in L~. let T:
L~ -+ L~, 1~ p ~ 00, denote the convolutor Tf = k * f, f E L~., and set
IlIkllip = II Tll p = sUPllt1lp =111 Tfll p '

2. A COHEN-TYPE INEQUALITY

THEOREM. Let n1 < n2< ... < nN be natural numbers and cn" cn2 '"'' cn,
be complex numbers with lenNI> 1. Then
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(n
N

)(2a +2)/p- (2a + 3)/2, 4a+4
I:::;;;p< 2a+3'

4a+4
p= 2a + 3'

4a+4
p = 2a + I '

4a +4
2a + I < p:::;;; 00, (2.1 )

where Mp,a,/3 is a constant which only depends on p, a and p.

For the proof of the theorem we need the following three lemmas.
Lemma 3 allows the reduction of the problem to good LP norm estimates
from below of the Jacobi polynomials R::;,/3). Lemmasl and 2 give the L p

norm estimates.

LEMMA 1. For each polynomial tN on IR of degree less than or equal to
N = 0, I, 2,..., and I :::;;; P :::;;; q :::;;; 00 one has

II t II ~ const N(2a +2)(I/p -l/q) II t IIN q"" p,q.a N p'

LEMMA 2. For Po = (4a + 4)/(2a + I) one gets

(2.2)

(2.3)

LEMMA 3. There exists a sequence (f~,/3)C;;~ I of continuous functions on
[-I, I] with

(i) Ilf~,/3lloo:::;;; I (N ErN),

(ii) cm(f~,/3) = 0 for m:::;;; N (m, N ErN),

(iii) cN(f~·/3)~N-a-l/2 (N--4 (0).

Proof of Lemma I. The proof is the same as the proof of Lemma I in
[4] in the case a = p. We include the proof then only for completeness.

Let D~·/3 be the Dirichlet kernel L.~~o hmR m. Then one has Df,/3 * t l = t l

for each polynomial of degree less than or equal to I and by the inequality of
Cauchy-Schwarz one gets

(2.4)
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Choose r as the least even number greater than or equal to p. Then t';P is a
polynomial of degree less than or equal to Nr/2. From (2.4) we have

[

1 J1/2
Ilt~21Ioo~IID~~2112 L11tN(x)lrw(x)dX

~ II Da ,13 II II t II<r-p )/211 t IIP/2"" rN/22 Noo N,p'

Since h:,13", m 2a + 1 (m-t 00) one gets

(

rN/2 1/2
IID~N~2112= ];0 hm) ~constaNa+l.

Thus we have proved (2.2) for q == 00. Hence we get

.1

II tNII~ = I ItN(x)lq-P ItN(x)IP w(x) dx
. -I

~c N(2a+2)(1/p)(q-p) lit II(q-P) lit liP"" p.q,a N P N P

which implies (2.2).

Proof of Lemma 2. R. Askey informed the authors that Lemma 2 had
been included by him as a problem in the fourth edition of Szego's book [12,
Problem 91 J. Thus, we dropped the proof which follows from computations
with Szego's asymptotic formula [12, Theorem 8.21.131.

Proof of Lemma 3. Let M denote the least odd integer greater than or
equal to 2a + 1. Let 1== N + M, N = 1,2,.... Define f~·13: 1-1, II-t IR by

Elementary computations show that

I+M

sin lrp sinM rp = I qs cos srp
s~l-M
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with suitable coefficients qs' In particular ql-M = 1/2(2i)M-l. Hence the
lowest appearing frequency in the cosine expansion of sin lrp sinM rp is N =
1- M. Now from (l.l) we get

( n) .;, (-m)dm+a+f3+ Ih . Zk rp
R,:'" (cos rp) = 2... k' () sm-.

k~O • a + I k 2

An easy computation shows

Hence

(a.M( )_ 2 (-m)m(m+a+f3+1)m ';;'
R m cos rp - (2,)zm , (1) cos mrp + ...... ak,m cos krp.

I m. a + m k~O

This shows cm(J~·I3) = °for m < Nand

From the duplication formula of the gamma function and the well-known
behaviour of the gamma function at infinity one gets CN(J~·I3)"'N-a-ll2.

Proof of the Theorem. One gets, with the testing function of Lemma 3
and jJ= nN ,

Illjtl cnjhnjRnj IIlp ~ ilL cnjhnjRnj * f%·
13

l1p

= IcNI hN\cN(J%·I3)IIIRNll p
>.: const jJZa+ IjJ-a-I/ZIIR _IIr a.13 N P

as hR",jJZa+l and \cNI~1. We assume ~~t~~p~oo. For l~p~~~t~

the assumption follows by duality. Now, for p = ~:t~ apply Lemma 2 and
for p > ~~t~ apply Lemma I with q = 00 and tN = RN• Recall that IIRRlloo =
RN(I) = 1.

Let us conclude this section with some remarks, In the special case
n1 = 0,... , nN = N - I, Co = CZ = ." = CN _ 1 = I and p = lone can use the
nice expression in [12, (4.5.3)1 for the Dirichlet kernel D~!1 instead of
Lemma 3. Let cnl = , .. = CnN _

1
= ° in the Theorem. This shows that in

contrast to the situation on the torus (a = f3 = - 1/2) the growth of the
convolutor norm of the Dirichlet kernel in our situation is at least the growth
of the convolutor norm of the term hnNR nN with the highest frequency nN.
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The estimate in Lemma 2 has been used by Newman and Rudin in [9] but
they did not give a proof. The proof of Lemma 1 is analagous to the proof in
the trigonometric case in Timan's book [13]. For p == 1, Icn) ~ l,j == 1,..., N
and a = -1/2 inequality (2.1) is related to the famous conjecture of
Littlewood [7] which has recently been proved [8].

3. DIVERGENCE RESULTS

As in [4] we deduce here some divergence results that follow directly by
usual technique from our Theorem. An increasing sequence lEN} of finite
subsets EN' N = 1,2,..., of IN with U~= I EN == IN is called a grouping on IN.
On L~. the partial sum operator relative to {EN} is defined by

SNf== I hmR m* f
meEN

COROLLARY 1. For 1~ P ~ 00 with p tl. (41:~ ~), 41: ~ :) and for every
grouping {EN} on IN there exists afunctionfE L~, such that

lim sup II S Nfll p == 00.
N~oo

For EN = {a, 1,...,N} and pE (P~,po) Pollard [12] proved the
convergence of the Jacobi expansions of L~.. Thus Corollary 1 completely
settles the problem of divergence and extends the result of Newman and
Rudin [9].

As mentioned in the Introduction, the zonal spherical functions on
symmetric spaces X of compact type of rank one can be viewed as Jacobi
polynomials (cf. [6]). The complete list of the spaces is sm, m ~ 2, pm(IR),
pm(C), pm(IH) and p2 (Cayley). One has the following table. The zonal
spherical function on X can be expressed by the Jacobi polynomials

TABLE I

X d=dimX p q

sn n 0 d-I
pn(1R ) n d-I 0
r(C) 2n d-2 1
r(IH) 4n d-4 3

p' (Cayley) 16 8 7
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R~d-2)/2.(q-\}j2), mEIN and for (a,f3) = (d;2, q2 1 ) the convolution
structure of the Jacobi polynomials R~·IH is inherited from the
corresponding symmetric space X. Denote by LP(X) the usual LP space over
X with respect to the normalized measure dw associated with the volume
element corresponding to the Riemanian structure on X. The convolutors S N

above extend to convolutors on LP(X) which are denoted by the same
symbol.

COROLLARY 2. Let X be a sym"!etric space of compact type and d =
dim X. Then for every p, 1";; P < 2dj(d + 1), and for every choice of the
grouping {EN} there exists afunctionfEU(X) such that

lim sup ISNf(x)1 = OCJ
N-d)

for dw almost all x in X.

In the case p = 1 the result follows with well-known elementary arguments
from the Theorem. Theorem 3 in [10] is a similar easy consequence of our
Theorem with p = 1. In the case 1 < p < 2dj(d + 1) Corollary 2 is a conse­
quence of Corollary 1 and a result of Stein [11]. In contrast to Corollary 1,
a much stronger result than Corollary 2 is known in the case of the
canonical groupin EN = {O, 1,... , N}. In this case the result is true for p < 2 =
lim d_ w 2dj(d + 1) = 2. This follows from a result of Fefferman [51
combined with the Passage theorem of Bonami and Clerc [1] and the result
of Stein [11] used above. Some of the results in this paper have recently been
extended by the first author to compact symmetric spaces of arbitrary
rank [3].
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